Rule Capacity in Fuzzy Boolean Networks
نویسندگان
چکیده
Fuzzy Boolean Networks are Boolean networks with nature like characteristics, such as organization of neurons on cards or areas, random individual connections, structured meshes of links between cards. They also share with natural systems some interesting properties: relative noise immunity, capability of approximate reasoning and learning from sets of experiments. An interesting problem related with these nets is the number of different rules that they are able to capture from experiments, that is, their rule capacity. This work establishes a lower bound for this number, proving that it depends on the number of inputs per consequent neurons.
منابع مشابه
Automatic Implementation and Simulation of Dynamic Qualitative Systems using Fuzzy Boolean Networks and Fuzzy Rule-Based Cognitive Maps
This paper presents the overview of an ongoing project which goal is to obtain and simulate the dynamics of qualitative systems through the combination of the properties of Fuzzy Boolean Networks and Fuzzy Rule Based Cognitive Maps.
متن کاملUsing a Fuzzy Rule-based Algorithm to Improve Routing in MPLS Networks
Today, the use of wireless and intelligent networks are widely used in many fields such as information technology and networking. There are several types of these networks that MPLS networks are one of these types. However, in MPLS networks there are issues and problems in the design and implementation discussion, for example security, throughput, losses, power consumption and so on. Basically,...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002